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Abstract-For the case when heat transfer is the main process responsible for the collapse of bubbles, the 
numerical solution is obtained for a non-linear non-steady problem of heat and mass transfer between a 
spherical vapour bubble and liquid with external pressure increasing step-wise. The Jacob number is the 
only similarity criterion of this problem. A set of functions R(t) (R is the bubble radius and t the time) is 
tabulated over a wide range of Jacob numbers (0.01 < Ju < 1000). It is shown that the variation of Ju 
entails a qualitative change in the form of the function R(t). When Ju = 0, the function R(t) is convex. 
When 0 < Ja -z 2, the curves R(t) are S-shaped, and when Ja > 2 they are concave. Tabulated numerical 
results taken together with analytical formulae for the limiting cases Ju -B 0 and Ju + co constitute a simple 
method of calculating R(f) for specific bubbles. An interpolation formula is obtained for determining the 

time of complete collapse of a bubble. The results of predictions are compared with experimental data. 

1. INTRODUCTION 

THE COLLAPSE of a single spherical vapour bubble after 
the jump in external pressure represents a complex 
process. An extensive study of this process implies 
regard for many physical factors [l]. Thus, numerical 
experiments presented in ref. [2] incorporated the 
effects of liquid inertia, heat transfer in both phases, 
kinetics of phase transition, liquid viscosity, and of 
the surface tension. The results of such calculations 
depend on a great number of dimensionless par- 
ameters associated with thermophysical properties, 
bubble sizes and pressure jumps, and each new case 
of collapse requires new computations based on a 
complex programme. 

Another approach, which is used in the present 
work, consists in the study of specific cases, when it is 
possible to isolate one dominant factor essentially 
responsible for the process of collapse. Then the vari- 
ation of one similarity criterion corresponding to this 
factor will exhaust the variety of possible situations. 
The results of the problem solution form a one-par- 
ameter set and can be tabulated. The tabulated results 
may be used to interpret experimental data and to 
verify approximate analytical methods. The need for 
new calculations is thus avoided. 

The inertia of liquid and heat transfer between a 
bubble and liquid are the two main factors responsible 
for the collapse [l, 21. Lord Rayleigh obtained [3] an 
analytical solution for the case when heat transfer 
occurred quickly and the process was of a purely 
hydrodynamic character, i.e. liquid motion to the bub- 
ble centre was controlled only by the liquid inertia. 
The inverse situation is considered in the present 
work. The collapse is assumed to occur rather slowly 
so that the pressure difference between the liquid and 
the bubble has time to equalize. In this case the process 

is controlled by heat transfer from the bubble to the 
liquid. Mathematically, this means that the heat con- 
duction equation for the liquid outside the bubble 
needs to be solved taking into account the motion of 
the bubble boundary. It appears that the assignment 
of the sole similarity criterion-the Jacob number- 
is sufficient for an adequate dimensionless description 
of the process. The estimates given in ref. [l] make it 
possible to outline the boundaries of a purely thermal 
regime. Specifically, transition to thermal collapse 
always occurs with a decrease of the value of the 
pressure jump. Thus, for water boiling at 100°C the 
boundary of the thermal regime corresponds to pres- 
sure jumps of the order of 0.1 atm or smaller for the 
bubble size of about 1 mm. 

The statement of the problem as well as numerical 
and analytical results for the time dependence of the 
bubble radius are given below. Taken together these 
results give the solution of the problem for the entire 
range of Ja from - co to cc. The numerical algorithm 
is described in the Appendix. 

2. STATEMENT OF THE PROBLEM 

The radius R,, pressure pO and temperature To, 
with p0 = p,(T,J, correspond to the non-perturbed 
state of a bubble. After a sharp increase in the external 
pressure Ap, there occur the equalization of pressure 
and attainment of thermodynamic equilibrium in the 
bubble. The bubble becomes somewhat compressed 
[4]. In the model under consideration, these processes 
are rather rapid (instantaneous). From here on, the 
pressure and temperature in the bubble settle at 
the values p,,-t-Ap and T,,+AT, respectively, with 
po+Ap = ps(T,,+AT). The temperature difference 
between the bubble and liquid is constant during the 
whole process because the liquid-vapour equilibrium 
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NOMENCLATURE 

a dimensionless radius of a bubble, R/R, 

heat capacity of liquid at constant pressure 
%rfc (x) (2/J7r)lp exp i-z’} dz 
h enthalpy of vaporization 
Ja Jacob number, cp,AT/hp, 

R radius of bubble 
r radial coordinate 
s 2Jt 
T temperature 
t time 
u (r’-R3)/Ri 

V a3 

X (r-R)/&. 

- 

conditions must be satisfied. The corresponding heat 
flux produces vapour condensation on the walls of the 
bubble, in consequence of which the bubble decreases 
till its complete collapse. This process is described by 

14351 

dR cp,cc 8T 

dt hp, ar r=R 
; R(0) = R, (2) 

T(r,t)= T,+AT; T(r,O)= T(m,t)= To. (3) 

Here, T(r, t) is the spherically symmetric temperature 
field in the liquid surrounding the bubble, r > R. 

Equation (1) describes a change in T(r, t) due to heat 
conduction (the right-hand side of equation (1)) and 
convective radial heat transfer (the term (dR/dt) 
(R2/r2)(LJT/&)). Equation (2) determines the velocity 
of the bubble boundary due to the heat flux from 
bubble to liquid and vapour condensation. In equa- 
tion (2), small terms of the order of p,/p, CC 1 have 
been omitted. The system of equations (l)-(3) is non- 
linear in T(r, t), and this explains its complexity for 
analytical solution. 

It should be emphasized that the quantity R,, cor- 
responds to the start of thermal collapse and that 
R. < R,. In ref. [4], a relation between R. and R, 

was derived on the basis of thermodynamic con- 
siderations. It can be assumed for estimation that 

(R, - R,)IR, = App/3p, when Ap < p,,. 
Now, turn to the dimensionless variables 0, X, 7 and 

a instead of T, r, t and R. Then, the system of equa- 
tions (l)-(3) will take the form 

da * _= Jag! 
ds 

; u(O)= 1 
0.x 7-0 

O(O,z) = 1 ; 0(x, 0) = fqco, z) = 0. (61 

Greek symbols 

; 
thermal diffusivity of liquid 

dimensionless temperature, (T- T,)/A7 
ti ‘quasi-self-similarity’ variable, .u;s 

P\ density of vapour 

PI density of liquid 
z dimensionless time, rtRo ’ 
T* another dimensionless time, 47r ’ Ja’ T. 

Subscripts 
0 initial state of bubble 
C instant of complete collapse (u = 0) 
S saturation state. 

It is seen that the solution of the system of equations 
(4)-(6) depends only on the value of Ju. The Jacob 
number has the following physical meaning. It will be 
assumed that the function T(r) has the shape of a step, 
i.e. the liquid layer adjacent to the bubble is heated to 
the temperature T, + AT, whereas the rest liquid has 
the initial temperature To. Then, it is easy to show 

that Ju is equal to the ratio of the bubble volume in 
the unperturbed state (4/37rRi) to the liquid volume 
heated to the end of collapse. From what has been 
said above, the reason can be understood for a strong 
qualitative dependence of the character of the problem 
solution on the value of Ja. In fact, when Ja x 1, heat 

is transferred only in a comparatively thin boundary 
layer of liquid around the bubble. Conversely, at small 
values of Ja a great liquid volume that is much larger 
than the bubble volume is heated. Obviously, in these 
two cases the heat transfer follows different patterns. 

3. RESULTS OF NUMERICAL SOLUTION 

The values of the function r*(u) obtained at differ- 
ent values Ja are presented in Table 1. This very 
material is also given graphically in Figs. l-3. It is 
seen that the function ~*(a, Ja) increases mono- 
tonically with Ja. When Ju > 2. the curves a(~*) have 
a concave shape. When Ja + rxi, they approach the 
limiting function designated by a dashed line in Fig. 
I. At high Ju it is possible to distinguish the initial 
stage of collapse, over which all of the curves virtually 
merge, and the final stage, over which the functions 
a(~*) are close to linear and their slope depends 
strongly on Ju. The final stage, which accounts for the 
greater portion of the total time of collapse, cor- 
responds to a relatively small range of the values 

of a. 
When Ja < 2, the curves a(t*) have a distinct S- 

shape (Figs. 2 and 3). A convex portion increasing 
with a decrease of Ju appears on the curves. The 
limiting curves at Ju = 0 (the dashed-dotted lines) arc 
purely convex. They have a vertical tangent line at the 
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Table 1. The values of the function ~*(a, Ju) obtained by numerical solution of the system of equations (l)-(3). The values 
of r*(a, co) are calculated from formula (12) 

a/Ja 0.01 0.02 0.1 0.2 0.5 1.0 2.0 5.0 

0.9 0.000877 0.00153 0.00435 0.00602 0.00803 0.00915 0.00987 0.0104 
0.8 0.001853 0.00339 0.01137 0.01740 0.0268 0.0335 0.0388 0.043 1 
0.7 0.002762 0.00515 0.01880 0.03043 0.0513 0.0691 0.0854 0.1007 
0.6 0.003576 0.00676 0.0260 0.0437 0.0788 0.1126 0.1487 0.1863 
0.5 0.00428 0.00817 0.0327 0.0564 0.1070 0.1609 0.2234 0.3025 
0.4 0.00488 0.00936 0.0385 0.0680 0.1345 0.2111 0.309 0.452 
0.3 0.00535 0.01032 0.0435 0.0781 0.1597 0.2603 0.400 0.634 
0.2 0.00570 0.01104 0.0473 0.0862 0.1813 0.305 0.491 0.845 
0.1 0.00592 0.0115 0.0499 0.0918 0.1975 0.341 0.571 1.067 
0.05 0.00598 0.0116 0.0507 0.0936 0.203 0.354 0.602 1.167 
0.0 0.00601 0.0117 0.0511 0.0945 0.206 0.361 0.620 1.23 
0.9 0.0105 0.0107 0.0107 0.0107 0.0107 0.0107 0.0107 0.0107 
0.8 0.0448 0.0457 0.0463 0.0465 0.0466 0.0466 0.0466 0.04667 
0.7 0.1076 0.1115 0.1140 0.1148 0.1153 0.1155 0.1156 0.1156 
0.6 0.2056 0.2174 0.2254 0.2282 0.2296 0.2305 0.2308 0.2311 
0.5 0.348 0.378 0.400 0.408 0.412 0.415 0.416 0.4167 
0.4 0.548 0.619 0.675 0.696 0.708 0.715 0.718 0.7200 
0.3 0.820 0.979 1.121 1.182 1.216 1.237 1.245 1.252 
0.2 1.180 1.526 1.906 2.097 2.212 2.291 2.318 2.347 
0.1 1.630 2.358 3.46 4.23 4.81 5.28 5.47 5.67 
0.05 1.86 2.89 4.81 6.58 8.37 10.25 11.17 12.33 
0.0 2.04 3.35 6.38 10.3 16.7 31.1 49.7 co 

end of collapse and a finite slope at the start of 
collapse. The curves presented in Figs. 2 and 3 illus- 
trate the character of the approximation to the limit- 
ing curves. With any Ju > 0 the initial stage ofcollapse 
always has a vertical tangent and, consequently, is 
concave. However, the extent of this stage decreases 
when Ja + 0. Analytical study of the system of equa- 
tions (4)-(6) for Ju -+ 0 and Ju + co, which is presented 

in the following sections, makes it possible to obtain 
the limiting curves in explicit form and to understand 
the above-described behaviour of the set of a(~*, Ju) 
curves. 

4. THE LIMITING CASE ./a + co 

Let another substitution of variables be made : the 
variables a and x be replaced by v and u. Moreover, 
the derivative cVI/& will be replaced by %/au. The 
‘time’ v varies from 1 to 0. After identical trans- 
formation the following equation will be obtained for 
determining the temperature field e(u, u) : 

ae ae -- 
a0 au u=o 

=Ju-$[(1+;~3$] (7) 

0(0, v) = 1 ; 8(co, v) = qu, 1) = 0. (8) 

0.6 

0 0.4 

o~2t)$?&______,____ 
5 IO 15 20 

FIG. 1. The set of curves of time vs bubble collapse radius, a(r*,Ju). Solid lines, results of numerical 
calculations:1,Ju=~,fo~ula(12);2,Ja=200;3,Ju=100;4,Ja=50;5,Ju=20;6,Ju=10;7, 

experimental data [6] ; 8, a = 1 -&* (see Section 8). 
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0. I 0.2 0.3 0.4 

r* 

FIG. 2. The set of functions a(~*, Ja) for smaller values of Ja than those given in Fig. 1 : 1, formula (12) ; 
2, Ja = 2; 3. Ja = 1; 4, Ja = 0.5; 5, Ja = 0.2. 

This transformation of the initial system enables 
one to discard the convective term, but the form of 
the Laplacian becomes more complicated. Consider 
the conditions under which the right-hand side of 
equation (7) can be simplified by regarding u << u, 
i.e. assuming that the heated liquid layer is thin as 
compared with the bubble size. Obviously, this is 
always the case at the start of collapse. However, when 
Ju >> 1, the range of validity of the thin heated layer 
approximation is much wider. Indeed, assume that 
most of the vapour has been already condensed. Then, 
according to the interpretation given above of the 
physical sense of the Jacob number, one can obtain : 
Au-a’ - Ja- ‘, where A.a is the characteristic thickness 
of the heated layer. Consequently, the condition for 
the heated layer to be thin (Au << a) is equivalent to 

0.4 - 

0.2 - 

0.005 0.01 0.015 

T* 

FIG. 3. The set of functions a(~*, Ja) for Ju << 1 : 1, formula 
(12); 2, Ju = 0.02; 3, Ju = 0.01; 4, same curves according 

to formulas (14) and (16). 

the inequality &z-a3 >> 1. This inequality is satisfied 
at any a > 0, when Ja -+ a. Therefore, the limiting 
solution, which corresponds to Ja -+ co, can be 
obtained from the following equation derived from 
equation (7) by eliminating the term u/v which is small 
as compared with unity : 

ae ae -_ 
a0 au u=o 

=J&?!! 
au2 . 

Equation (9) has an exact solution 

(9) 

e+, V) erfc {Ju . u[J7~(1 -v)]}. (10) 

Equation (5) in the new variables can be integrated 
in explicit form 

The substitution of equation (10) into integral (1 I) 
yields the well-known formula first obtained in ref. [6] 

z* = $a~-. ’ + $2 _ 1, (12) 

Florschuetz and Chao [6] used the thin heated layer 
method of Plesset and Zwick [7]. The above derivation 
of equation (12) is distinguished by employing the 
quantity v = (R/R,)3 rather than the variable 

s R4 dt 
0 

which is used in the work of Plesset and Zwick [7]. 
The use of the variable v makes it possible to obtain 
the final result-formula (12)-much more easily than 
in ref. [6]. It should be emphasized however that the 
present version of the thin heated layer method does 
not lead to new solutions. The method of Plesset and 
Zwick gives the following solution of the problem 
under consideration : 
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FIG. 4. Temperature protiles at the start and end of collapse for Ju = 37.5 (K is the ‘quasi-self-similarity’ 
variable) ; 1, T = 0, u = 1; 2, 5 = r,, a = 0 ; 3, n = 0.1. 1 and 2, numerical calculations ; 3, formula (10). 

O(r,f) = erfc[(r3-R3)/6(ti~R4df)li*]. (lo’) 

Despite the difference in appearance, solutions, 
equations (10) and (lo’), are identical. This can be 
easily proved by taking into account the relation 
between R and t expressed as function (12). However, 
equation (10) is simpler; it directly relates the tem- 
perature profile to the bubble radius and does not 
involve the time. Moreover, the form of equation (10) 
vividly displays the role of Ja: as Ju increases, the 
heated layer becomes thinner. 

When Jo >> 1, function (10) is close to an exact 
solution, and gives the shape of the temperature pro- 
file close to the real one, as can be seen from Fig. 4. 
More than likely this is the reason for a good agree- 
ment between formula (12) and the results of numeri- 
cal calculations. This agreement also persists beyond 
the region of validity of the original approximation 
Au << a. For example, when Ja = 1000 and a = 0.1, 
Ju * u3 = 1 and the layer of heated liquid is not thin. 
However, the value of z* calculated by equation (12) 
differs by only 4% from the results of numerical cal- 
culations (Table 1). Thus, equation (12) not only gives 
an exact limiting law for the bubble collapse, but also 
represents a very good approximation at large Ju. 

5. THE LIMITING CASE ./a + 0 

When Ju --f 0, equation (5) yields that da/d7 + 0. 
For such an ‘infinitely slow’ collapse the temperature 
profile has a quasi-stationary shape 

T(r, t) = To + AT?. (13) 

The form of the function R(t) can be easily obtained 
by substituting function (13) into equation (5) and 
integrating 

a = (1 - ,*/z:)“2. (14) 

Here, r,* = 2Ju/n. The method of successive 
approximations will now be used. To this end, it is 
necessary to substitute solution (13) into the left- 
hand side of equation (1) and to solve the following 
equation for T(‘) 

aa -- 
rz ar 

(15) 

Here T(O) and R(O) correspond to equations (13) and 
(14). Omitting the details of the solution of equation 
(IS), the final result is obtained : equation (14) retains 
its form, but now 

*= 
2Ju 

7c n(l+ l.SJu)’ 

In Fig. 3, the limiting curves, equations (14) and 
(16), are compared with the results of numerical cal- 
culations. The main specific feature of the quasi- 
steady collapse-its acceleration to the end of the 
process-is very clearly seen. 

6. COMPARISON WITH EXPERIMENTAL DATA 

Unfortunately, there are no experimental data that 
can represent a change in the pattern of bubble col- 
lapse with variation of Ju within wide ranges. The 
majority of experiments were carried out with water 
at 100°C and at AJYJ of the order of a fraction of an 
atmosphere. In this case, Ju - 20-50. For such values 
of Ju, numerical calculations differ from equation (12) 
only when u 6 0.3. Therefore, to compare with the 
predicted results (Fig. 1) the experimental data of ref. 
[6] were taken for a bubble with a remarkably low 
gas content (air concentration amounted only to 
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2 x 10e4). Experimental points given in ref. [6] for 
a > 0.1 are close to curve 5 in Fig. 1 (Ju = 20). In fact, 
the predicted curve for this bubble (Ju = 37.5 [6]) 
should lie a little to the right, closer to curve 4 
(Ja = 50). Thus, the experimental rate of bubble col- 
lapse is somewhat higher than the predicted one. This 
seems to be due to the bubble motion which enhances 
heat transfer. 

7. TIME OF COMPLETE COLLAPSE 

OF A BUBBLE 

According to equation (12), T* = co at a = 0. This 
indicates that r,* + co when Ja + co. An attempt has 

been made to obtain additional information about z,* 
by solving equation (7) for Ju >> 1 by the method 
of successive approximations. This can be done by 
different techniques, but all of them are not math- 
ematically quite rigorous, since at small values of a 
the values of r* differ appreciably from those given 

by equation (12). However, all these attempts lead to 
the formulas of the form z,* = CJU*‘~ where C - 1. 
This prediction, which has the character of a plausible 
hypothesis, checks excellently with the results of 
numerical calculations at Ju = 20, 50, 100, 200, 500, 
1000 (Fig. 5). 

At small values of Ju, the function rd(Ja) is given 
by equation (16). All of these data are described by a 
single interpolation formula 

r: = 0.5Ju(0.69+,/Ju)-2'3. (17) 

Despite the simplicity of this relation, it gives an error 
not higher than 0.5% as compared with the results of 
numerical calculations. In Fig. 5 the curve, which 
corresponds to equation (17), is compared with exper- 
imental data of refs. [6,8]. The experimental values 

of r,* have been determined in the present work by 
extrapolating the experimental curves a(~*) to a = 0. 

102 

m-5 
o-6 

TEI 
IO' 

i 

This procedure is necessary because actual bubbles 
do not collapse to the end owing to the presence of 
dissolved gases in them. Figure 5 shows that equation 
(17) agrees well with the experimental data. However, 
for actual collapse equation (17) will always somewhat 
overestimate r$ due to the disregard of the motion of 
bubbles which enhances heat transfer. 

8. CONCLUDING REMARKS 

The estimates of u(z*) and 7: which can be obtained 
by the substitution of the temperature field 

0(r, t) = erfc [(Y- R)/Z(zt)l”] 

into equation (2) (i.e. as a result of the exact solution 
of a plane thermal problem) are well known [6, 81. It can 
be easily checked that this yields (I = 1 -Jr*: z: = 1. 

Figures l-3 and 5 show that these estimates may differ 
appreciably, by many orders, from correct values, 
This disadvantage seems to be also typical for a more 
general approach based on the use of the Duhamel 
integral for describing a heat flux from the bubble to 
liquid in the thermal regime with the external pressure 
varying arbitrarily. Especially marked deviations of 
the real behaviour of bubbles from the plane bound- 
ary approximation is to be expected at small values 
of Ju (Ju f 1). 

Formulations of the problems which have been 
revealed, but not solved, in the present work are given 
below. 

(1) The rigorous analytical investigation of the 
asymptotic law for r:(Ju) when Ju + 00 is absent. It 
would be of interest to prove rigorously that 

rc * - C Ju*‘~ and to calculate the value of C (or to 
reject this hypothesis). 

(2) There is no rigorous investigation of the behav- 
iour of the function R(t) resulting from the solution 

/ 
/ 

'2 

FIG. 5 Dependence of the dimensionless time of bubble collapse T: on Ja : 1, formula (17) ; 2,~: = 
3, z: = 2Ja/z ; 4, formula (16) ; 5, 6, experimental data of refs. [6, 81, respectively. 

0 .5Ja2/‘; 
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of the system of equations (l)-(3) at R = 0. Numerical 
calculations do not allow one to answer with certainty 
the simple question whether the rate of collapse dR/dt 
is finite or infinite at R = 0. There is also another 
question left untouched as to whether the curves R(t) 

are purely concave when Ja >> 1 or their convexity at 
the end of collapse becomes very small and indis- 
cernible against the background of calculation errors. 
It is quite probable that the curves R(t) are S-shaped 
for all Ja, but when Ja -+ CO, their convex portion 
flattens more and more, not losing yet its convexity. 
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APPENDIX: ALGORITHM FOR NUMERICAL 
SOLUTION OF THE SYSTEM 

OF EQUATIONS (4)-(6) 

The unknown function 0(x,z) is discontinuous at 
z = x = 0. Therefore, the straight numerical solution of the 
problem in these variables is impossible. The replacement of 
the variables x and T by K = x/s and s = 2Jz allows the 
smoothing of the solution in both the time and space vari- 

ables. The system of equations (4~(6), transformed to new 
variables, acquires the form 

(A*) 
da Ja atI 

ds 2 &c.,o’ a(o)=1 

O(K, 0) = erfc (ic), O(0, s) = 1, O(c0, s) = 0. (A3) 
The introduction of the variable K = x/s is reasonable 

because of its ‘quasi-self-similarity’ nature. By neglecting the 
motion of the bubble boundary and its curvature, it is poss- 
ible to obtain the solution of equation (Al) in the form 
0 = erfc (K). For this reason the initial condition in the vari- 
ables IC,S has the form of equation (A3). In the process 
of collapse the temperature field e(K, s) becomes noticeably 
deformed, but its extension along the K-axis varies little (Fig. 
4). For solving equation (Al), use was made of the doubly 
centred, four-point, always stable implicit difference scheme 
of the second-order approximation. Difference equations 
were solved by the factorization method. It should be noted 
that because of the presence of the terms ws-’ on the right- 
hand side of equation (Al), this scheme has only the first- 
order approximation nears = 0. However, it is easy to prove 
that for any fixed s > 0 the second-order approximation 
is retained when the mesh width for IC is diminished. For 
calculating &?/alc(,=, and determining the function a(s) by 
integrating equation (A2), expressions of the third-order 
approximation have been used, since only then the accuracy 
of calculation of a(s) is not worse than that provided by the 
difference scheme used for the solution of equation (Al). 

The accuracy of calculation was controlled with the aid of 
the thin heated layer approximation. To obtain this approxi- 
mation, it is sufficient to neglect the term (Ks+a)-’ within 
the braces of equation (Al) and also to expand the expression 
within the square brackets of equation (Al) into the series 
in the small parameter x/a = Ksja 

*- a ( > 2z?!2 
Ics+a a 

In this approximation the solution of the system of equa- 
tions (Al)-(A3) is given by formula (12). By substituting 
equation (A4) into equation (Al) and solving the resulting 
system numerically, the results must be obtained that 
coincide with those given by formula (12) within the errors 
of the numerical algorithm. Such a control algorithm is very 
convenient, because it differs from the main algorithm only 
by one Fortran operator and the control system of equations 
is very similar to the initial one. When performing cal- 
culations the results of which are listed in Table 1, the values 
of mesh widths for K and s were of the order of lo-‘. The 
values of T* calculated for the thin heated layer approxi- 
mation differed from those given by formula (12) only by 
the fifth decimal digit. Therefore, the three decimal digits 
retained in Table 1 can be regarded as reliable. 

LE REGIME THERMIQUE DU COLLAPSUS DE BULLE DE VAPEUR A DIFFERENTS 
NOMBRES DE JACOB 

Rbum&Dans le cas od le transfert thermique est le principal m&canisme responsable du collapsus des 
bulles, la solution numCrique est obtenue pour un probleme variable non lineaire de transfert de chaleur 
et de masse entre une bulle de vapeur sphCrique et un liquide, avec une pression exteme croissant par 
tchelon. Le nombre de Jacob est le seul critbre de similitude du probl8me. Un systime de fonctions R(t) 
(R est le rayon de bulle et t le temps) est tab& pour un large domaine de nombre de Jacob 
(0,Ol < Ja < 1000). On montre que la variation de Ja entraine un changement qualitatif de la forme de la 
fonction R(f). Quand Ja = 0, la fonction R(t) est convexe. Quand 0 < Ja < 2, elle est concave. Des 
resultats numbriques tabults pris avec les formules analytiques pour les cas limites Ja + 0 et Jo + co 
constituent une mt!thode simple de calcul de R(t) pour des bulles spCcifiques. Une formule d’interpolation 
est obtenue pour determiner le temps de collapsus complet d’une bulle. Les resultats de p&diction sont 

comparts avec les donnbes expkrimentales. 
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DAS KOLLABIEREN VON DAMPFBLASEN BEI VERSCHIEDENEN JAKOB-ZAHLEN 

Zusammenfassung-Fiir den Fall, da13 die Wlrmetibertragung der dominierende Vorgang beim Kollabieren 
von Blasen ist, wird eine numerische Liisung fur das nichtlineare instationlre Warme- und Stoffiiber- 
gangsproblem zwischen einer kugelfiirmigen Dampfblase und der Fliissigkeit ermittelt, wobei der auBere 
Druck stufenweise gesteigert wird. Die Jakob-Zahl ist das einzige Ahnlichkeitskriterium fur dieses Problem. 
Einige Funktionen R(t) (Blasenradius R in Abhangigkeit von der Zeit t) werden iiber einen weiten 
Bereich der Jakob-Zahl (0,Ol < Ju < 1000) tabelliert. Es wird gezeigt, daD eine Variation der Ju-Zahl eine 
qualitative Formlnderung der Funktion R(t) zur Folge hat. Bei Ju = 0 ist die Funktion R(r) konvex, im 
Bereich 0 < Ju -c 2 besitzen die R(t)-Kurven S-formige Gestalt, fiir Ja > 2 werden die Kurven konkav. 
Tabellierte numerische Ergebnisse zusammen mit analytischen Gleichungen fiir die Grenzfalle Ju -+ 0 und 
Ju -+ a, ergeben eine einfache Methode zur Berechnung von R(c) fiir bestimmte Blasen. Die Zeit fur das 
vollsmndige Kollabieren einer Blase wird aus einer Interpolationsformel ermittelt. Die Berechnungs- 

ergebnisse wurden mit experimentellen Daten verglichen. 

TEI-IJIOBOti PEX&IM CXJIOIIbIBAHH~ IIAPOBOI-0 IIY3bIPII IIPH PA3JIHYHbIX 
3HAYEHHFIX YIHCJIA IIKOEA 

AslroTalpm-PeureHa~HcneHHoHenHHe~HanHeclarruoHapHan 3anasaTennooBhseHa napoeoro ny3bIppac 

xwsocrbw II~H cIcamoo6pamoM eo3pacrama memiero naanemin rum cnynar, Korna rennoo6Mee 
IlBnleTCS-l OCHOBHbIM llpOUCCCOM, BJlSiRH)IUHM Ha CXJlOllbtBaHHe. nOnyYeH0 CeMeaiCTBO 3aBHC~MOCTeti 

paAHyCa ny3bIpR OT BpCMeHB R(t)B UIHpOXOM EUiTepBane 3Ha'ieHHii YHCJIa FIKoBa Ja--eAHHCTBeHHOrO 

KpATepAn 110A06HsAaHHoii 3aAaWi(O,Ol < Ja c 1000). ~OK~~~HO,YTOII~HH~M~H~HHH Ja BHA$~HKUHH 
R(t) KaWCTBeHHO U3MeHlleTCR. npU .!a=0 @yHKUHR BbUlyKJIa, IlpH o< Ja < 2 KpHBan R(r) UM.X’T 
S-o6pastiym +OpMy, npn Ja > 2 OHa CTaHOBuTCn BOrHyTOfi.Ta6ynUpOBaHHbIe pe3ynbTaTbI WiCneHHOrO 

pc%IIeHHK B COBOKyIIHOCW C aHamlTH%CKHMH (POpMynaMH &WI IlpeAeAbHbIX CJly'iaCB Ja+0 II Ja-+ 02 
COCTBBJIIIIKJT EIpOCTOih MeTOA PaC'iiiTa R(t) AJIR KOHKpeTHbIX II)nbIpe.ii. nOJIy'leHa NHTepItOARUHOHHall 

@OpMynaAJM OIIpeAeneHHK BpeMeHH IlOnHOrOCMbIKaHUII IIy3btpK.Pe3ynbTaTbI paC’i~TOBCOIIOCTaB~eHb1 

C 3lCClIepUMeHTa.lIbHbIMU AaHHbIMH. 


